Notes1 ECE 2500 Digital Logic To the First Exam ©2025 Prof. Dean R. Johnson

Lecture Topics:

- The Digital World
- Boolean Algebra
- Logic Gates & Circuits
- minterms and K-maps
- Maxterms and K-maps

THE DIGITAL WORLD

Major Application of Digital Logic: the design of processor chips in computers and mobile devices.

• Classic iPod (4th generation 2004)

From: electronics.howstuffworks.com/ipod3.htm

Photo credit: apple.com

• Display (320 x 240 pixel LCD)

From: electronics.howstuffworks.com/lcd2.htm

• Click Wheel (capacitive sensing controller) From: electronics.howstuffworks.com/ipod4.htm

• PortalPlayer SOC processor (dual core)

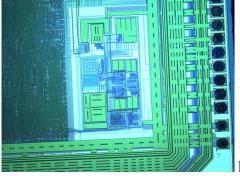


Photo credit: microblog.routed.net

- Memory (SDRAM 32 MB)
- Hard drive (30 GB)
- **iPhone** 16 Pro differences (2024)

From: https://en.wikipedia.org/wiki/List_of_iOS_devices

Image credit: apple.com

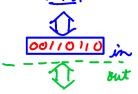
- 6 GB memory
- 128-1012 GB solid-state drive
- Touch HDR display (2556 x 1179 pixel color OLED)
- o 64 bit Apple A18 Pro SOC processor
 - Hex-core CPU
 - Hex-core GPU
 - 16-core NPU

Image Credit: Apple

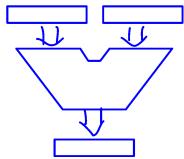
Digital Logic Components: these are the digital building blocks that will be studied in this course.

• **Register** (holds various forms of digital data)

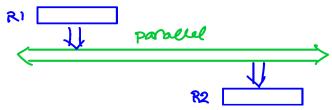
• **Port** (a register interfacing data to/from the outside world)



• ALU (adds contents of 2 registers)

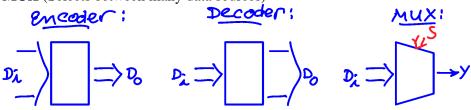


• **Bus** (A path by which data may flow from one register to another in parallel)

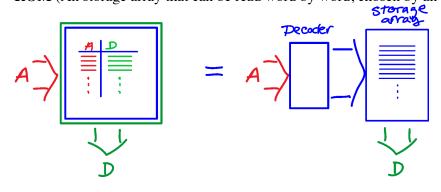


• **USB cable** (A path by which data packets may be transferred serially to ports from a hub)

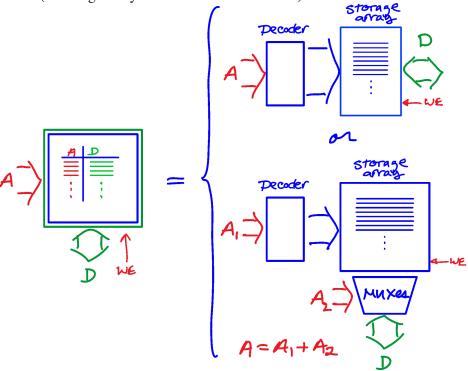
- **Encoder** (Encodes or compresses data)
- **Decoder** (Decodes or expands data. Also used to make memory location selections)
- MUX (Selects between many data sources)



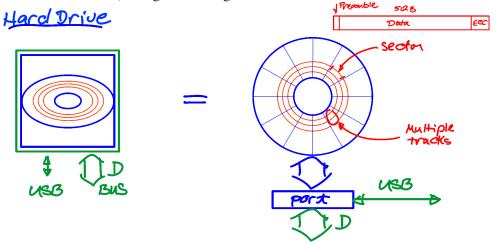
• ROM (An storage array that can be read word by word, chosen by an address)



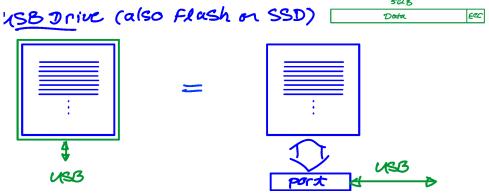
• RAM (A storage array that also can be written to)



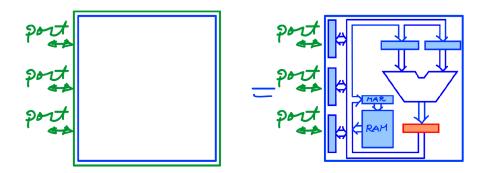
• Hard Disk Drive (A magnetic storage device from which blocks of data can be stored and read



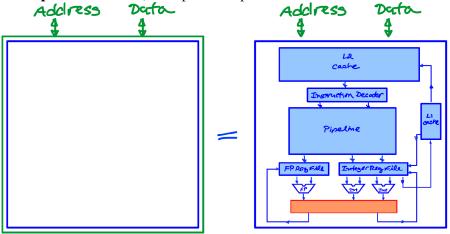
• USB drive (A ROM device which can transfer data in blocks over a USB cable)



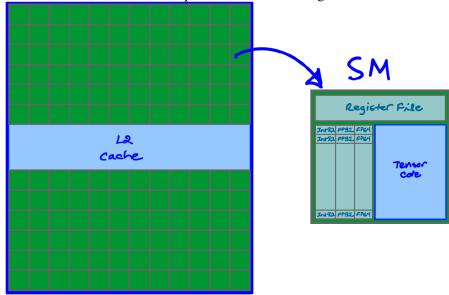
• Microcontroller MCU (A processing device consisting of an ALU, registers, ports and RAM)



• Microprocessor CPU (More powerful processor that has extensive memory and multiple ALUs)



- Graphic Processing Unit GPU
 - The H100 consists of 144 Streaming Multiprocessors (SM)
 - Each SM has a tensor core capable of fast matrix algebra



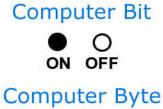
- A GPT or Grot AI Large Language Model (LLM) application requires:
 - 64-256 GPUs for inference
 - 25,000 GPUs for training

Digital Data Types

• Numeric

Graphic credit: techspirited.com

- Beginnings:
 - bit (b) defined by Claude Shannon as "basic information digit" (1948)
 - byte (B) coined by IBM researcher Werner Buchholtz (1964)



ComputerHope.com Image credit: ComputerHope.com

• A new bit used in Quantum Computing is the Qubit:

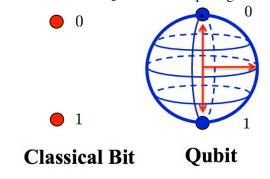
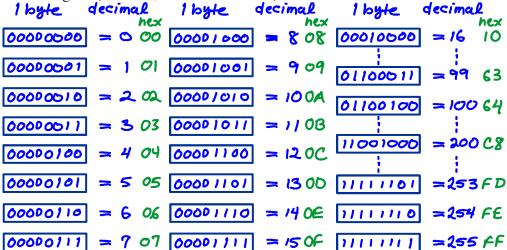


Image credit: IBTimes UK

- Integers in a byte (8 bits)
 - Total unsigned (0 -> 255, 256 total members)



• Example: Hexadecimal and decimal

• Comparison of decimal, binary, octal and hex:

Decimal	Binary	Octal	Hexadecimal	
0	o	0	0	
1	1	1	1	
2	10	2	2	
<i>3</i>	11	<i>3</i>	<i>3</i>	
4	100	4	4	
<i>5</i>	101	<i>5</i>	<i>5</i>	Red 1 and 2 = "Carry"
<i>6</i>	110	<i>6</i>	<i>6</i>	A,B,C,D,E,F = extra hex digits
7	111	7	7	, -, -, -, -, -, -, -, -, -, -, -, -,
8	1000	10	<i>8</i>	Important number conversions
9	1001	11	9	to remember:
10	1010	12	A	
11	1011	13	В	$(10)_{10} = (1010)_2 = (A)_{16}$
12	1100	14	C	$(11)_{10} = (1011)_2 = (B)_{16}$
13	1101	<i>15</i>	D	
14	1110	16	E	
<i>15</i>	1111	<i>17</i>	F	
16	10000	<i>20</i>	10	

- Fractionals in a byte

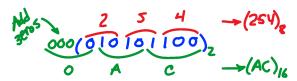
Example:

$$(109600) = 1 \times 2^{-1} = .5$$

 $C = 8 + 1 \times 2^{-2} = .35$
 $+ 1 \times 2^{-5} = .03125$
 $0 \times .C = .78125$

- Integer conversions between binary, octal and hex
 - Octal: group in 3 bits
 - Hex: group in 4 bits

Example #1: Convert (010101100)₂ to base 8 and 16



Example #2: Convert (110.110) 2 to base 8 and 16



- Juxtapositional notation:
 - Integer, radix point and fraction

$$N = number$$

= $(a_{n-1} \ a_{n-2} ... \ a_2 \ a_1 \ a_0 .. \ a_{-1} \ a_{-2} \ a_{-3} ... \ a_{-m})_r$
Integer | Fraction
radix point

■ *Examples:* (radix = base)

$$(353.12)_{r=10} = 3 \times 10^{2} + 5 \times 10^{1} + 3 \times 10^{0} + 1 \times 10^{-1} + 2 \times 10^{-2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$$

$$General Polynomial:$$

$$N = number$$

$$= \sum_{n-1}^{n-1} a_{i}r^{i}$$

$$= \sum_{i=-m}^{n-1} a_{i}r^{i}$$

$$= \sum_{i=-m}^{n-1} a_{i}r^{i}$$

$$= \sum_{i=-m}^{n-1} a_{i}r^{i}$$

$$= a_{n-1}r^{n-1} + a_{-1}r^{-1} + a_{-1}r^{-1} + a_{-1}r^{-1} + a_{-1}r^{n-1} + a_{$$

- Non-numeric
 - Characters
 - ASCII: 1 B for each of $2^8 = 256$ English, control and special characters (Latin-1)

789ABCDEF From: http://www.asciitable.com/

ASCII: "A" =
$$01000001$$
 = 41

"B" = 01000010 = 42

"C" = 01000011 = 43

:

"ECE 2500" = 4543452032353030

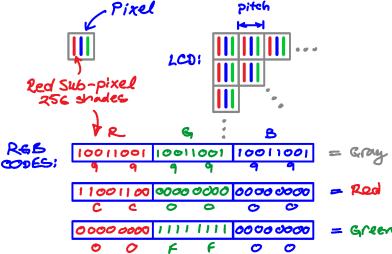
E C E 492500 = 86465

■ UNICODE: 2²⁴ ~17 million characters with code points spread over 2 or 3B (UTF-16 or 24). Handles international characters & emoticons

From: https://unicode.org/emoji/charts/full-emoji-list.html

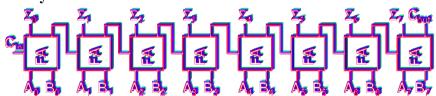
• Color Codes

From: howstuffworks.com/lcd5.htm



- More html examples: immigration-usa.com/html_colors.html
- 24 bit color -> 2^{24} ~ 17 million colors
 - Red 1 B => 256 shades
 - Green 1 B => 256 shades
 - Blue 1 B => 256 shades

Binary arithmetic:



• Bit by bit addition is done right to left, with carry bits

• Examples: Adding

3 00011 5 00101 5 00101
$$\frac{1}{7}$$
 $\frac{1}{7}$ $\frac{1}{7}$

- Subtraction can be done by employing **borrow bits**, or more simply, by adding something called a 2's complement.
 - Examples:

• The concept of a *complement* of a decimal number:

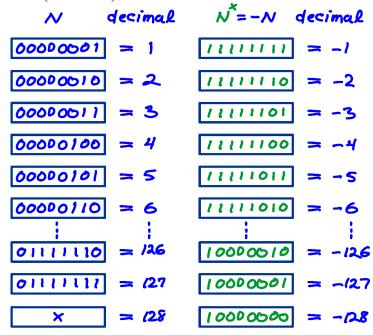
- 2's complement procedure:
 - \circ Reverse all the bits of N
 - Add I to the result. This is N^* .
 - The sign of N^* (as well as N) is shown by the most significant bit: 0 = + 7; 1 = -6
 - Examples:

Examples:

$$N = 6 = 00110$$
 11001 Step#1
 $+1 \text{ Step#2}$
 $-N = N^2 = -6 = 11010$
 $1100 \text{ what is } -N?$
 00001 Step#1
 $+1 \text{ Step#2}$
 $00010 = N : -N = -2$

- All the 2's complement numbers that fit into a byte.
 - 127 positive numbers N (sign bit = 0)
 - 128 negative numbers N^* (sign bit = 1)

■ Zero (not shown)



Error Correction Codes (ECC):

• Provides self-correction of errors that occur in the data when transporting data

• Scratched disk alter recorded data:

From: hardwaresecrets.com/

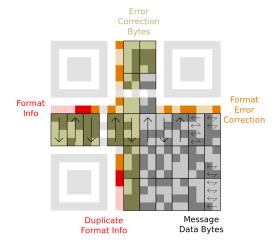
• Cosmic rays flip one bit in a 4GB chip everyday:

From: spectrum.ieee.org/

• Defaced QR code:

From: hwww.i-programmer.info

• Reed-Solomon ECC code in QR:



en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders

Quiz #1 & selected solutions

(Photo credit: Vic Lee, King Features Syndicate)

Some Preliminaries...

Binary numbers can also be used to represent truth or logic values.

Logic defined: the process of classifying information.

Binary logic (or more commonly, *digital logic*) is the process of classifying information into two distinct classes, e.g.

```
(TRUE, FALSE) = truth values
(Yes, No)
(CLOSE, OPEN) = relay positions
blown, intact = fuse state
(ON, OFF) = switch positions
(1, 0) = binary numbers, or (Logic 1, Logic 0)
```

Logic design is based upon the three logic operators

Binary Logic Operations (Variables)

AND: z = x•y
 OR: z = x+y
 NOT: z = x¹

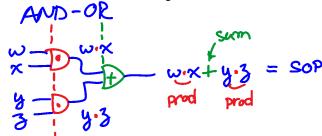
Binary Logic Operations

OR	XOR	AND
0 + 0 = 0	$0 \oplus 0 = 0$	$0 \bullet 0 = 0$
0 + 1 = 1	$0 \oplus 1 = 1$	$0 \cdot 1 = 0$
1 + 0 = 1	$1 \oplus 0 = 1$	$1 \cdot 0 = 0$
1 + 1 = 1	$1 \oplus 1 = 0$	$1 \cdot 1 = 1$

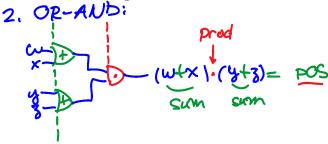
Two Level Logic Circuits with AND/OR/XOR gates:

From: computer.howstuffworks.com/boolean1.htm

• AND-OR circuits (sum of product = SOP)



• OR-AND circuits (product of sum = POS)



These circuits can also be described algebraically with the use of an algebra system for logic variables called...

Boolean Algebra

• Fundamental properties of Boolean Algebra: Each x, y and z are elements of $B = \{0,1\}$

1. Identities: (P3, P4) (Dual)

$$x+0=x$$
 $x \cdot 1 = x$
 $x+1=1$ $x \cdot 0 = 0$
Also Idempotency: (P6)
 $x+x=x$ $x \cdot x = x$

2. Commutativity: (P1)

$$x+y=y+x x • y = y • x$$

3. Associativity: (P2)

$$x+(y+z) = (x+y)+z$$
 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

4. *Distributivity*: (P8)

$$x+(y \circ z) = (x+y) \circ (x+z)$$
 $x \circ (y+z) = x \circ y + x \circ z$

5. Existence of the complement: (P5)

There exists an element x', called NOT x, such that

$$x+x'=1 x \cdot x'=0$$

6. *Involution*: (P7) (x')' = x

7. *Absorption*: (P12)

$$x+xy=x$$
 $x(x+y)=x$

8. Adjacency: (P9)

$$xy+xy'=x$$
 $(x+y)\bullet(x+y')=x$

9. **DeMorgan's Law**: (P11)

$$(x+y+z)' = x'y'z'$$
 $(x \cdot y \cdot z)' = x'+y'+z'$

- **Duality**: Left and right hand properties above are *duals*
 - A dual may be derived by interchanging
 - 1 and 0
 - (AND) and + (OR)

• Examples:

$$x+0=x$$
 $x\cdot(x+y)=x$
 $x\cdot 1=x$ $x+xy=x$

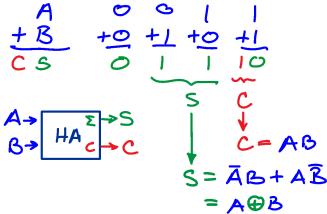
Boolean Functions and Logic Circuits

- Boolean function f
 - \circ f(A, B, C) is an algebraic expression of A, B, C
 - \circ **A**, **B**, **C** are Boolean variables
- Boolean functions are implemented by logic circuits
- Boolean functions may be simplified, resulting in simpler logic circuits
- Circuits and functions may be verified by constructing a truth table
- *Example #1*:
 - Derive a logic circuit from a Boolean function:

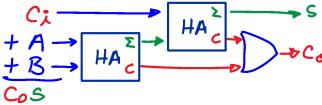
$$f(A_1B_1C) = A_1B + A_1B_1C = SOF$$
 $= sum of products$
 $Circust(i)$
 $A = D + A_1B_1C$
 $A = D + A_1B_1C$
 $A = D + A_1B_1C$
 $A = D + A_1B_1C$

• *Example #2*:

• Derive a Boolean function for a half adder:



• Make a full adder from two half adders:



- Example#3
 - Simplify the Boolean function of *Example#1* by pattern matching terms with the Boolean properties above:

Boolean Algebra
(pattern matching)

$$f = AB + ABC v$$
 $x + xy = x$

Pattern

if $f = AB$

AB

Circuit 2

• Compare before and after circuits with a truth table:

ABC	2) AB	minter ABC	m () f= AB+ ABC/
000	00	0 0	0+0=0
010	0	0 0	0+0=0 0+0=0 0+0=0
100	0	0	0+0=0
1111	U .	~ 500	ne 9

• Example #4: More simplifications

$$f = ABC + B$$
 $ABC + B$
 $ABC + ABC$

ABC + ABC

 $ABC + ABC$
 $ABC + AB$

Quiz #2 & selected solutions

= (A+B) C.D

LOGIC GATES AND CIRCUITS

DeMorgan's Laws Shows Equivalent Graphical Symbols for Logic Gates: Examples are given to describe

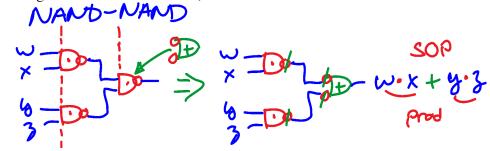
• NAND gate drawn with an OR symbol

• NOR gate drawn with an AND symbol

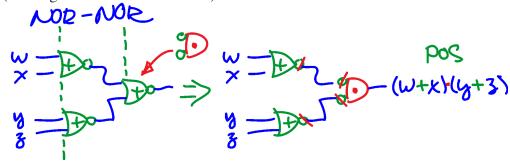
• NOTs built from NANDs, NORs and XORs

Two Level Logic Circuits with Other Gates: Examples are given to describe

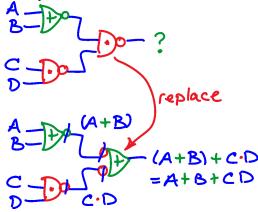
• **NAND-NAND** circuits = **AND-OR** circuits; makes *SOP* functions (Leading NAND looks like an OR)



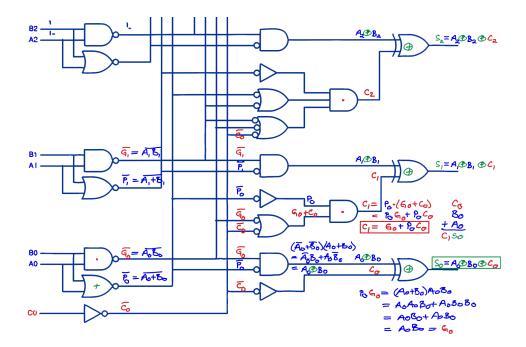
• **NOR-NOR** circuits = **OR-AND** circuits; makes *POS* functions (Leading NOR looks like an AND)



• Example: NAND-NOR Combination



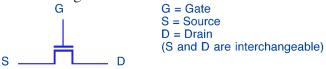
- Example: Carry-lookahead adder logic
 - Most heavily designed circuit in the history of electronics
 - NOT, NAND, NOR, XOR combination
 - Gate fronts and backs match so bubbles cancel



CMOS Implementation of Logic Gates

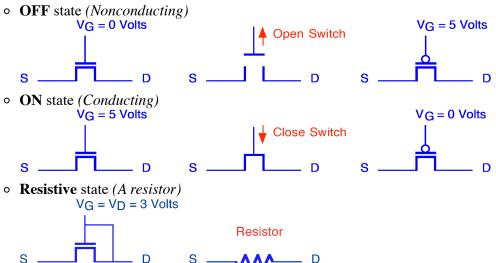
Examples are shown to implement NAND, NOR, and NOT gates from elementary NMOS and PMOS transistors.

- **CMOS** transistors = NMOS plus PMOS
- Current flows between the Source and the Drain
- The Gate voltage controls the conduction value between the Source and Drain:



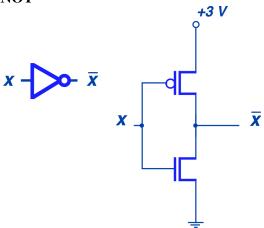
The NMOS transistor may be configured to operate in one of three different states, as determined by the voltage at the gate terminal V_{G} :

• Three states of a **NMOS** and **PMOS** transistors:

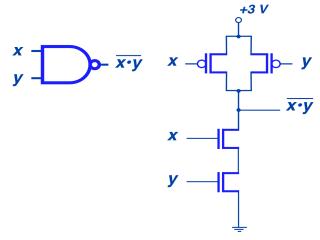


• NAND, NOR and NOT gates can be constructed from two to four transistors.

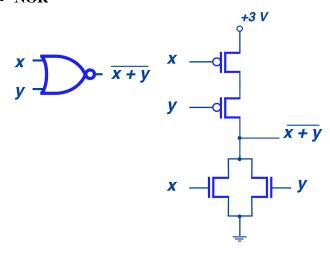
 \circ NOT



• NAND

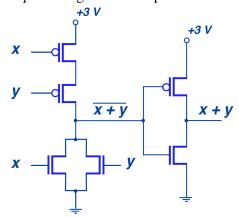


• NOR



- AND and OR gates
 - Require at least six **CMOS** transistors.

• Example: OR gate = NOR plus NOT



- Integrated circuit layout for NOT, NAND and NOR gates, using CMOS.
- Zoom down inside an IC to see gates!

Quantum Computing Implementation of Logic Gates

• Pauli X (NOT) gate

10> State becomes 11> State

$$|0\rangle$$
 — $|1\rangle$

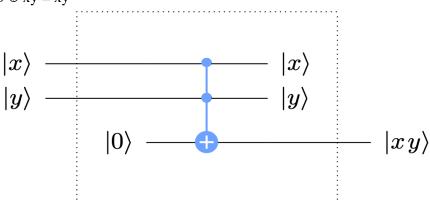
• **CNOT** gate (using Toffoli)

10> State becomes 11> State if the Control is 11>

$$|1\rangle$$
 $|1\rangle$

• AND gate (using CCNOT Toffoli)

 $0 \oplus xy = xy$

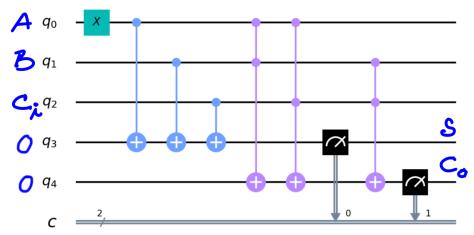


• H gate

10> State becomes 50% superimposed with 11> State

$$|0\rangle$$
 — $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

• Example Quantum Full Adder Circuit



(Image: thequantuminsider.com)

Quiz #3 & selected solutions

MINTERMS

Suppose we want to expand a certain SOP function f_I into canonical form whereby each resulting product term contains a literal of every independent variable of f_I .

$$f_1(A_1B_1C) = \overline{A_1B} + B_1\overline{C} + A_1BC = SOP$$

$$= \overline{A_1B_1C+C} + \overline{A_1B_1C} + \overline{$$

The product terms above are called **minterms**, the properties of which are now be presented.

Minterm Properties and Notation

• A minterm is a product term which produces a single 1 in a truth table

	"12	11/13	11.17	'' '7		
raw ABC	ABC	ABC	ABC	ABC	fi fi	
0 000	0	0	6	C	0 1	_
1 001	0	0	0	0	10	
3 011	0	<i>l</i>	0	0	10	
4 100	0	0	0	0	0	
6 110	00	0	0	0	1 0	

- The minterm which yields a 1 in row i is denoted as minterm m_i
- Express *f* in terms of minterms:
 - Compose a minterm list for f. (An atomic list)

• Example:

$$f_1 = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

 $= m_2 + m_3 + m_6 + m_7$
 $= \sum m(2,3,6,7)$

- Additional properties of minterm lists
 - \circ $\mathbf{f} = \Sigma \mathbf{m} (row \# s \text{ where } \mathbf{f} = 1)$
 - $\circ f' = \Sigma m(row \# s \ where f = 0)$
 - $\circ \Sigma m(all\ row\#s) = 1$
- Minterm index i
 - Obtained by determining the row code for which $m_i = 1$
 - Example:

$$\overline{ABC} = | \text{ where } ?$$

$$0 10 \text{ in } 1002$$

$$ABC = M_2$$

Quiz #4 & selected solutions (also includes *Maxterms* discussed below)

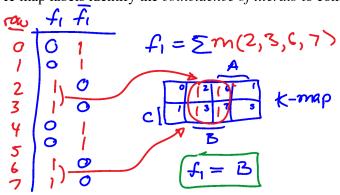
K-MAPS

Karnaugh Maps

What is a K-map? It is a graphical tool that quickly finds minimal algebraic forms of Boolean functions. The **SOP** forms are discussed here; **POS** forms are described in a later section.

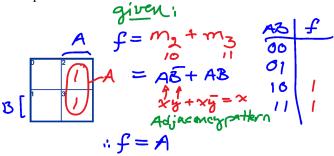
Karnaugh Map Properties

- Each cell in a K-map for a function f corresponds to a row of the truth table describing f
- Cell i is a place mark for minterm m_i .
- K-map labels identify the *coincidence of literals* to combine adjacent minterm.

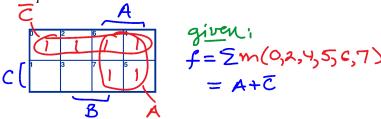


Sizes of K-maps

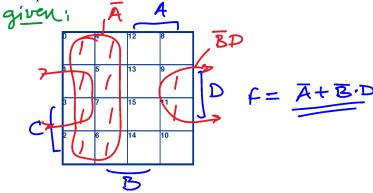
• Example: 2 variable



• Example: 3 variable

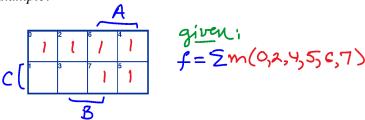


• Example: 4 variable



Procedure for Plotting SOP Functions on a K-map

- **Determine the minterms** m_i contained in f (found by observing the rows where f = 1 in the truth table).
- Plot the 1's of the function to be minimized on the K-map.
 - For each minterm m_i in f, enter a 1 in cell i.
 - Example:

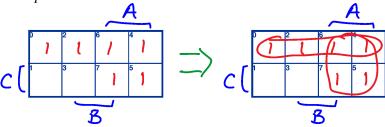


• For each *don't care* contained in f, enter a d (or x) in the associated K-map cell (see example later).

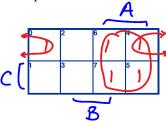
Procedure for reading minimal SOP expressions from K-maps

- Draw **loops** around **adjacent 1**-entries (cells with **1**'s) in largest groups possible.
 - Group size in a power of two (e.g. 1 cell, 2 cells, 4 cells, 8 cells, etc.)

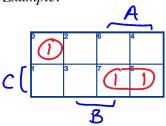
• Example:



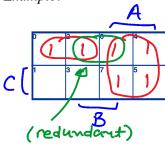
- Cells over the left and right edges, or the upper and lower edges are also defined to be adjacent.
 - Example:



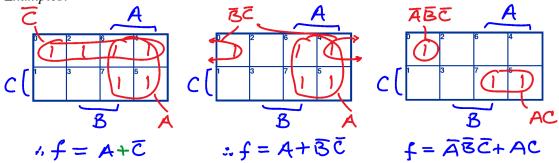
- 1-entries not adjacent to other 1-entries are circled as groups of one.
 - Example:



- Discard redundant groupings
 - Discard those entries covered entirely by other groups
 - Example:



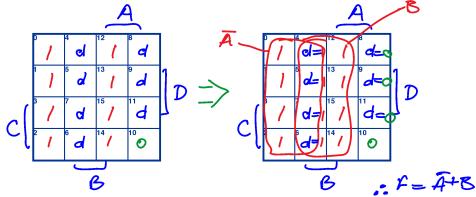
- For each group (as seen in the several examples above),
 - **Read** off the **coincident literals**, by exploiting K-map labels
 - **AND** those literals together to form products formed by the groups
 - **OR** the resulting products to create a SOP expression
 - Examples:



Map Simplification Resulting from Don't Cares

- Don't care = d (or X) = {0,1} (either a 0 or a 1)
- Group 1-entries as before, but

- Also include any *d*-entries which serve to increase the size of the group of 1's
- Treat unused *d*-entries as **0**-entries
- Must have at least one 1-entry in all groups
- Example:



• Never group cells consisting **entirely** of don't care entries. This results in a redundant group.

Quiz #5 & selected solutions (includes POS usages)

MAXTERMS & K-MAPS

Maxterm Properties and Notation

Now we want to consider expanding a certain POS function f_2 into canonical form whereby each resulting sum term contains a literal of every independent variable of f_2 .

$$f_2(A,B,C) = (A+B) \cdot (\overline{A}+B+\overline{C}) \cdot (\overline{A}+B+\overline{C}) = POS$$

$$= (A+B+C) \cdot (A+B+\overline{C}) \cdot (\overline{A}+B+\overline{C}) \cdot (\overline{A}+B+\overline{C})$$

$$= (A+B+C) \cdot (A+B+\overline{C}) \cdot (\overline{A}+B+\overline{C}) \cdot (\overline{A}+B+\overline{C})$$

$$= canonical POS$$

The sum terms above are called **Maxterms**, the properties of which now follow.

• A **Maxterm** is a sum term which produces a single **0** in a truth table

	n=3	Mo	M,	_M4	.,-M5		
(M)	ABC!	(A+B+C)	(A+B+C)	(A+B+C)	(A+B+C)	42	fz
O	000	O		1	1	0	1
1	001	1	O	1	1	O	- 1
2	010)		1	1	l	0
3	011	1	I	1	1	1	O
4	100	1	1	0)	O	- 1
5	101	1		1	٥	0	1
6	110	1	1)	1	1	0
7	111	J	1	1	1		0

- Maxterm which yields a θ in row i is denoted as maxterm M_i
- Expressing f in terms of Maxterms:
 - Compose a Maxterm list for f. (An atomic list)

• Example:

$$f_2 = (A+B+C)\cdot(A+B+C)\cdot(A+B+C)\cdot(A+B+C)$$

$$= M_0\cdot M_1\cdot M_4\cdot M_5$$

$$= TTM(0,1,4,5)$$

- Additional properties of Maxterm lists
 - \circ $\mathbf{f} = \mathbf{\Pi} \mathbf{M} (row \# s \text{ where } \mathbf{f} = 0)$
 - \circ $\mathbf{f}' = \mathbf{\Pi} \mathbf{M} (row \# s \ where \ \mathbf{f} = 1)$
 - \circ $\Pi M(all\ row\#s) = 0$
- Maxterm index *i*
 - Obtained by determining the row code for which $M_i = 1$
 - Example:

$$\overrightarrow{A}+B+\overline{C}=0$$
 where?
 $\overrightarrow{10}$ in 005
 $\overrightarrow{A}+B+\overline{C}=M_{5}$

Other Properties of minterms and Maxterms

- $f = \Sigma m(row\#s) = \Pi M(opposite\ row\#s)$
 - $f = \Pi M(row\#s) = \Sigma m(opposite\ row\#s)$
- If $f = \Sigma m(row\#s)$ then $f' = \Sigma m(opposite row\#s)$
- If $f = \Pi M(row \# s)$ then $f' = \Pi M(opposite row \# s)$
 - Examples:

$$f_1 = \sum m(2,3,6,7) = TM(0,1,4,5) = f_2$$

 $f_1 = \sum m(0,1,4,5) = TM(2,3,6,7) = f_2$

• $m_i' = M_i$

$$M_i' = m_i$$

• Examples:

$$m_{i} + M_{i} = m_{i} + \overline{m}_{i} = 1$$

$$(x + \overline{x} = 1)$$

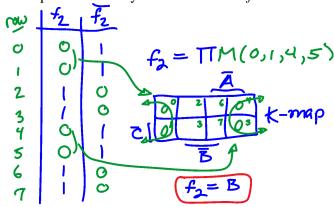
$$m_i \cdot \overline{M}_i = m_i \cdot m_i = m_i$$

$$(x \cdot x = x)$$

K-Map POS Properties

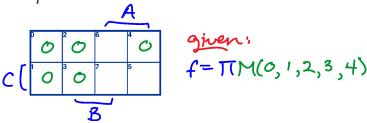
• Cell *i* is a place mark for Maxterm M_i .

• K-map labels identify the *coincidence of literals* to combine adjacent Maxterms.



Procedure for plotting and reading minimal POS expressions from K-maps

- Plot the 0's of the function to be minimized on a K-map.
 - For each maxterm M_i in f, enter a 0 in cell i.
 - Example:



- Draw loops around adjacent 0-entries.
- For each group
 - Read off the complement of the coincident literals covering the group
 - **OR** those literals together to form sums
 - **AND** the resulting sums to create a product
 - Example:

